
Package: cxr (via r-universe)
October 13, 2024

Type Package

Title A Toolbox for Modelling Species Coexistence in R

Version 1.1.1

Description Recent developments in modern coexistence theory have
advanced our understanding on how species are able to persist
and co-occur with other species at varying abundances. However,
applying this mathematical framework to empirical data is still
challenging, precluding a larger adoption of the theoretical
tools developed by empiricists. This package provides a
complete toolbox for modelling interaction effects between
species, and calculate fitness and niche differences. The
functions are flexible, may accept covariates, and different
fitting algorithms can be used. A full description of the
underlying methods is available in García-Callejas, D., Godoy,
O., and Bartomeus, I. (2020) <doi:10.1111/2041-210X.13443>.
Furthermore, the package provides a series of functions to
calculate dynamics for stage-structured populations across
sites.

License MIT + file LICENSE

URL https://github.com/RadicalCommEcol/cxr

BugReports https://github.com/RadicalCommEcol/cxr/issues

Depends R (>= 3.5)

Imports Matrix, mvtnorm, optimx, stats

Suggests BB, DEoptimR, dfoptim, dplyr, GenSA, ggplot2, knitr,
magrittr, minqa, nloptr, rmarkdown, stringr, testthat (>=
0.8.0), tidyr, ucminf

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

Repository https://radicalcommecol.r-universe.dev

RemoteUrl https://github.com/radicalcommecol/cxr

1

https://doi.org/10.1111/2041-210X.13443
https://github.com/RadicalCommEcol/cxr
https://github.com/RadicalCommEcol/cxr/issues

2 Contents

RemoteRef HEAD

RemoteSha eb37479fff7721b2b4b928293afba51eae309ebd

Contents
abundance . 3
abundance_projection . 4
avg_fitness_diff . 5
BH_er_lambdacov_global_effectcov_global_responsecov_global 7
BH_er_lambdacov_none_effectcov_none_responsecov_none 8
BH_pm_alpha_global_lambdacov_none_alphacov_none 9
BH_pm_alpha_none_lambdacov_none_alphacov_none 9
BH_pm_alpha_pairwise_lambdacov_global_alphacov_global 10
BH_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise 11
BH_pm_alpha_pairwise_lambdacov_none_alphacov_none 12
BH_project_alpha_global_lambdacov_none_alphacov_none 13
BH_project_alpha_none_lambdacov_none_alphacov_none 14
BH_project_alpha_pairwise_lambdacov_global_alphacov_global 14
BH_project_alpha_pairwise_lambdacov_global_alphacov_pairwise 15
BH_project_alpha_pairwise_lambdacov_none_alphacov_none 16
build_param . 17
calculate_densities . 18
competitive_ability . 18
cxr_er_bootstrap . 20
cxr_er_fit . 21
cxr_generate_test_data . 24
cxr_pm_bootstrap . 26
cxr_pm_fit . 28
cxr_pm_multifit . 30
densities_to_df . 33
fill_demography_matrix . 34
fill_dispersal_matrix . 34
fill_transition_matrix . 35
fitness_ratio . 36
generate_vital_rate_coefs . 36
glm_example_coefs . 38
LV_er_lambdacov_global_effectcov_global_responsecov_global 38
LV_er_lambdacov_none_effectcov_none_responsecov_none 39
LV_pm_alpha_global_lambdacov_none_alphacov_none 40
LV_pm_alpha_none_lambdacov_none_alphacov_none 40
LV_pm_alpha_pairwise_lambdacov_global_alphacov_global 41
LV_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise 42
LV_pm_alpha_pairwise_lambdacov_none_alphacov_none 43
LV_project_alpha_global_lambdacov_none_alphacov_none 44
LV_project_alpha_none_lambdacov_none_alphacov_none 45
LV_project_alpha_pairwise_lambdacov_global_alphacov_global 45
LV_project_alpha_pairwise_lambdacov_global_alphacov_pairwise 46

abundance 3

LV_project_alpha_pairwise_lambdacov_none_alphacov_none 47
LW_er_lambdacov_global_effectcov_global_responsecov_global 48
LW_er_lambdacov_none_effectcov_none_responsecov_none 49
LW_pm_alpha_global_lambdacov_none_alphacov_none 49
LW_pm_alpha_none_lambdacov_none_alphacov_none 50
LW_pm_alpha_pairwise_lambdacov_global_alphacov_global 51
LW_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise 52
LW_pm_alpha_pairwise_lambdacov_none_alphacov_none 53
LW_project_alpha_global_lambdacov_none_alphacov_none 54
LW_project_alpha_none_lambdacov_none_alphacov_none 54
LW_project_alpha_pairwise_lambdacov_global_alphacov_global 55
LW_project_alpha_pairwise_lambdacov_global_alphacov_pairwise 56
LW_project_alpha_pairwise_lambdacov_none_alphacov_none 57
metapopulation_example_param . 58
neigh_list . 58
niche_overlap . 59
RK_er_lambdacov_global_effectcov_global_responsecov_global 60
RK_er_lambdacov_none_effectcov_none_responsecov_none 61
RK_pm_alpha_global_lambdacov_none_alphacov_none 62
RK_pm_alpha_none_lambdacov_none_alphacov_none 62
RK_pm_alpha_pairwise_lambdacov_global_alphacov_global 63
RK_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise 64
RK_pm_alpha_pairwise_lambdacov_none_alphacov_none 65
RK_project_alpha_global_lambdacov_none_alphacov_none 66
RK_project_alpha_none_lambdacov_none_alphacov_none 67
RK_project_alpha_pairwise_lambdacov_global_alphacov_global 67
RK_project_alpha_pairwise_lambdacov_global_alphacov_pairwise 68
RK_project_alpha_pairwise_lambdacov_none_alphacov_none 69
salinity_list . 70
spatial_sampling . 70
species_fitness . 71
species_rates . 72
summary.cxr_er_fit . 73
summary.cxr_pm_fit . 73
summary.cxr_pm_multifit . 74
vec_permutation_matrices . 74
vital_rate . 75

Index 76

abundance Abundance measurements

4 abundance_projection

Description

A dataset containing abundances for each plant species, where each species was sampled at its
developmental peak.

• plot: one of 9 plots of the study area

• subplot: one of 36 1x1 m subplots of each plot

• species: plant species

• individuals: number of individuals observed

Usage

data(abundance)

Format

A data frame with 5184 rows and 4 variables

Note

For details, see Lanuza et al. 2018 Ecology Letters.

abundance_projection Project abundances from population dynamics models

Description

The function projects a number of steps of a time-discrete model, with model parameters taken from
a ‘cxr_pm_multifit‘ object or as function arguments.

Usage

abundance_projection(
cxr_fit = NULL,
model_family = NULL,
alpha_form = NULL,
lambda_cov_form = NULL,
alpha_cov_form = NULL,
lambda = NULL,
alpha_matrix = NULL,
lambda_cov = NULL,
alpha_cov = NULL,
covariates = NULL,
timesteps = 2,
initial_abundances = 0

)

avg_fitness_diff 5

Arguments

cxr_fit object of type ‘cxr_pm_multifit‘. If this is not specified, all parameters below
are needed.

model_family acronym for model family. Included by default in ‘cxr‘ are ’BH’ (Beverton-
Holt), ’RK’ (Ricker), ’LW’ (Law-Watkinson), ’LV’ (Lotka-Volterra).

alpha_form character, either "none","global", or "pairwise".

lambda_cov_form

character, either "none" or "global".

alpha_cov_form character, either "none","global", or "pairwise".

lambda named vector with lambda values for all taxa to be projected.

alpha_matrix square matrix with taxa names in rows and columns.

lambda_cov optional named matrix with covariates in columns and taxa in rows, representing
the effect of each covariate on the lambda parameter of each taxa.

alpha_cov optional list. Each element of the named list represents the effects of a covariate
over alpha values. Thus, each list element contains a square matrix of the same
dimensions as ‘alpha_matrix‘, as returned from the function ‘cxr_pm_fit‘. Note
that for alpha_cov_form = "global", all columns in this matrix are the same, as
there is a single value per species.

covariates matrix or dataframe with covariates in columns and timesteps in rows.

timesteps number of timesteps to project.
initial_abundances

named vector of initial abundances for all taxa.

Value

named matrix with projected abundance values for each taxa at each timestep.

avg_fitness_diff Average fitness differences

Description

computes the average fitness differences among two or more species according to the formulation
of the MCT (Chesson 2012, Godoy and Levine 2014), and according to the structural approach
(Saavedra et al. 2017). For the MCT version, the average fitness ratio is decomposed in a ’demo-
graphic ratio’ and a ’competitive response ratio’, the product of which is the average fitness ratio
(Godoy and Levine 2014). This formulation is only valid for competitive interaction coefficients
(i.e. positive alpha values in the interaction matrix). The structural analog can be computed for any
interaction matrix, on the other hand. Note that the ’demographic ratio’ is model-specific (Hart et
al. 2018).

6 avg_fitness_diff

Usage

avg_fitness_diff(
cxr_multifit = NULL,
cxr_sp1 = NULL,
cxr_sp2 = NULL,
pair_lambdas = NULL,
pair_matrix = NULL,
model_family = NULL

)

Arguments

cxr_multifit cxr_pm_multifit object, with parameters for a series of species.

cxr_sp1 cxr_pm_fit object giving the parameters from the first species.

cxr_sp2 cxr_pm_fit object giving the parameters from the second species.

pair_lambdas numeric vector of length 2 giving lambda values for the two species.

pair_matrix 2x2 matrix with intra and interspecific interaction coefficients between the two
species.

model_family model family for which to calculate fitness differences.

Details

This function, as in niche_overlap and competitive_ability, accepts three different parame-
terizations:

• A cxr_pm_multifit object, from which average fitness differences will be computed across all
species pairs.

• two cxr_pm_fit objects, one for each species.

• explicit lambda and alpha values, as well as the model family from which these parameters
were obtained.

If using the third parameterization, the function will try to find a model-specific function for obtain-
ing the demographic ratio, by looking at the ’model_family’ parameter. If this specific function is
not found, it will resort to the standard Lotka-Volterra formulation (lambda in the numerator term).
Overall, we strongly suggest that you use the standard formulation ONLY if you are completely
confident that your custom model is consistent with it. Otherwise, you should include your own
formulation of the demographic ratio (see vignette 4).

Value

data frame with variable number of rows, and columns specifying the different components of
the MCT average fitness ratio, as well as its structural analog. The average fitness ratio informs
quantitatively about the better competitor. If the ratio is < 1, sp2 is the better competitor; if = 1,
both species are equivalent competitors, if > 1, sp1 is the better competitor.

BH_er_lambdacov_global_effectcov_global_responsecov_global 7

Examples

avg_fitness_diff(pair_lambdas = runif(2,1,10),
pair_matrix = matrix(runif(4,0,1),nrow = 2),
model_family = "BH")

BH_er_lambdacov_global_effectcov_global_responsecov_global

Effect response Beverton-Holt model with covariate effects on lambda,
effect, and response

Description

The function for calculating fecundity given effect and response values is taken from Godoy et al.
(2014). Note that, as e and r are not pair-specific, all species parameters are fit in the same function.

Usage

BH_er_lambdacov_global_effectcov_global_responsecov_global(
par,
fitness,
target,
density,
covariates,
fixed_parameters

)

Arguments

par 1d vector with initial parameters in the order: lambda,lambda_cov,effect,effect_cov,response,response_cov,sigma

fitness 1d vector with fitness observations

target matrix with species in rows, observations in columns. Value is 1 if a species is
focal for a given observation, 0 otherwise.

density matrix with species in rows, observations in columns. Value is density of each
sp as neighbour for each observation.

covariates numeric dataframe or matrix with observations in rows and covariates in columns.
Each cell is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","lambda_cov","effect","effect_cov",
"response","response_cov".

Value

log-likelihood value

8 BH_er_lambdacov_none_effectcov_none_responsecov_none

BH_er_lambdacov_none_effectcov_none_responsecov_none

Effect response model without covariate effects

Description

The function for calculating fecundity given effect and response values is taken from Godoy et al.
(2014). Note that, as e and r are not pair-specific, all species parameters are fit in the same function.

Usage

BH_er_lambdacov_none_effectcov_none_responsecov_none(
par,
fitness,
target,
density,
covariates,
fixed_parameters

)

Arguments

par 1d vector with initial parameters in the order: lambda,effect,response,sigma.

fitness 1d vector with fitness observations.

target matrix with species in rows, observations in columns. Value is 1 if a species is
focal for a given observation, 0 otherwise.

density matrix with species in rows, observations in columns. Value is density of each
sp as neighbour for each observation.

covariates included for compatibility, not used in this model.

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","effect","response".

Value

log-likelihood value

BH_pm_alpha_global_lambdacov_none_alphacov_none 9

BH_pm_alpha_global_lambdacov_none_alphacov_none

Beverton-Holt model with a global alpha and no covariate effects

Description

Beverton-Holt model with a global alpha and no covariate effects

Usage

BH_pm_alpha_global_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, alpha, and sigma.

fitness 1d vector of fitness observations, in log scale.
neigh_intra_matrix

included for compatibility, not used in this model.
neigh_inter_matrix

matrix of arbitrary columns, number of neighbours for each observation. As in
this model there is a single alpha argument, do not distinguish neighbour identity

covariates included for compatibility, not used in this model.
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_inter".

Value

log-likelihood value

BH_pm_alpha_none_lambdacov_none_alphacov_none

Beverton-Holt model with no alphas and no covariate effects

Description

Beverton-Holt model with no alphas and no covariate effects

10 BH_pm_alpha_pairwise_lambdacov_global_alphacov_global

Usage

BH_pm_alpha_none_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda and sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

included for compatibility, not used in this model.
neigh_inter_matrix

included for compatibility, not used in this model.

covariates included for compatibility, not used in this model
fixed_parameters

included for compatibility, not used in this model

Value

log-likelihood value

BH_pm_alpha_pairwise_lambdacov_global_alphacov_global

Beverton-Holt model with pairwise alphas and global covariate effects
on lambda and alpha

Description

Beverton-Holt model with pairwise alphas and global covariate effects on lambda and alpha

Usage

BH_pm_alpha_pairwise_lambdacov_global_alphacov_global(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

BH_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise 11

Arguments

par 1d vector of initial parameters: lambda, lambda_cov, alpha, alpha_cov, and
sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov","alpha_cov".

Value

log-likelihood value

BH_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise

Beverton-Holt model with pairwise alphas, covariate effects on
lambda, and pairwise covariate effects on alpha

Description

Beverton-Holt model with pairwise alphas, covariate effects on lambda, and pairwise covariate
effects on alpha

Usage

BH_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, lambda_cov, alpha, alpha_cov, and
sigma

fitness 1d vector of fitness observations, in log scale

12 BH_pm_alpha_pairwise_lambdacov_none_alphacov_none

neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov","alpha_cov".

Value

log-likelihood value

BH_pm_alpha_pairwise_lambdacov_none_alphacov_none

Beverton-Holt model with pairwise alphas and no covariate effects

Description

Beverton-Holt model with pairwise alphas and no covariate effects

Usage

BH_pm_alpha_pairwise_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: ’lambda’, ’alpha_intra’ (optional), ’alpha_inter’,
and ’sigma’

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates included for compatibility, not used in this model
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter".

BH_project_alpha_global_lambdacov_none_alphacov_none 13

Value

log-likelihood value

BH_project_alpha_global_lambdacov_none_alphacov_none

Beverton-Holt model for projecting abundances, with a global alpha
and no covariate effects

Description

Beverton-Holt model for projecting abundances, with a global alpha and no covariate effects

Usage

BH_project_alpha_global_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter single numeric value.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

14 BH_project_alpha_pairwise_lambdacov_global_alphacov_global

BH_project_alpha_none_lambdacov_none_alphacov_none

Beverton-Holt model for projecting abundances, with no alpha and no
covariate effects

Description

Beverton-Holt model for projecting abundances, with no alpha and no covariate effects

Usage

BH_project_alpha_none_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter included for compatibility, not used in this model.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

BH_project_alpha_pairwise_lambdacov_global_alphacov_global

Beverton-Holt model for projecting abundances, with specific alpha
values and global covariate effects on alpha and lambda

Description

Beverton-Holt model for projecting abundances, with specific alpha values and global covariate
effects on alpha and lambda

BH_project_alpha_pairwise_lambdacov_global_alphacov_pairwise 15

Usage

BH_project_alpha_pairwise_lambdacov_global_alphacov_global(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.
alpha_intra single numeric value.
alpha_inter numeric vector with interspecific alpha values.
lambda_cov numeric vector with effects of covariates over lambda.
alpha_cov named list of numeric values with effects of each covariate over alpha.
abundance named numeric vector of abundances in the previous timestep.
covariates matrix with observations in rows and covariates in columns. Each cell is the

value of a covariate in a given observation.

Value

numeric abundance projected one timestep

BH_project_alpha_pairwise_lambdacov_global_alphacov_pairwise

Beverton-Holt model for projecting abundances, with specific alpha
values and global covariate effects on alpha and lambda

Description

Beverton-Holt model for projecting abundances, with specific alpha values and global covariate
effects on alpha and lambda

Usage

BH_project_alpha_pairwise_lambdacov_global_alphacov_pairwise(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

16 BH_project_alpha_pairwise_lambdacov_none_alphacov_none

Arguments

lambda named numeric lambda value.
alpha_intra single numeric value.
alpha_inter numeric vector with interspecific alpha values.
lambda_cov numeric vector with effects of covariates over lambda.
alpha_cov named list of named numeric vectors with effects of each covariate over alpha

values.
abundance named numeric vector of abundances in the previous timestep.
covariates matrix with observations in rows and covariates in named columns. Each cell is

the value of a covariate in a given observation.

Value

numeric abundance projected one timestep

BH_project_alpha_pairwise_lambdacov_none_alphacov_none

Beverton-Holt model for projecting abundances, with specific alpha
values and no covariate effects

Description

Beverton-Holt model for projecting abundances, with specific alpha values and no covariate effects

Usage

BH_project_alpha_pairwise_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.
alpha_intra included for compatibility, not used in this model.
alpha_inter single numeric value.
lambda_cov included for compatibility, not used in this model.
alpha_cov included for compatibility, not used in this model.
abundance named numeric vector of abundances in the previous timestep.
covariates included for compatibility, not used in this model.

build_param 17

Value

numeric abundance projected one timestep

build_param Build param structure

Description

Builds a nested list for the parameters of a given metapopulation

Usage

build_param(sp, sites, rates, env, num.params = NULL)

Arguments

sp character vector with species names

sites character vector with site names

rates character vector, vital rate names

env boolean, whether environment is accounted for

num.params optional, integer giving the number of parameters to account for. If not specified,
it will include environment interactions with all species densities. E.g. if 3 sp
and env = TRUE, there will be 7 params (intercept + 6 betas)

Value

nested list of the form ‘list[[sp]][[site]]‘. Each of these elements is a NA matrix with vital rates in
rows and expected parameters in columns.

Examples

sp <- c("s1","s2","s3")
sites <- c("sa","sb")
rates <- c("Sj","Sn","Sr","Rn","Rr","D","O")
env <- TRUE
param <- build_param(sp = sp,sites = sites,rates = rates,env = env)

18 competitive_ability

calculate_densities Obtain species densities from transition matrices

Description

Using the vec-permutation approach as defined in: Hunter and Caswell 2005, doi:10.1016/j.ecolmodel.2005.05.002,
Ozgul et al. 2009, doi: 10.1086/597225 In particular, it uses the arrangement by patches, and cal-
culates first demography, then dispersal (Table 1 of Hunter and Caswell 2005).

Usage

calculate_densities(focal.sp, vpm, current.densities)

Arguments

focal.sp integer, focal species
vpm data structure holding all vector-permutation matrices; see ‘vec_permutation_matrices‘.

If not in an appropriate format, it is likely to fail without warning.
current.densities

list of length sp, each element is a matrix sites*stages. If not in that format, it is
likely to fail without warning.

Value

matrix of sites x stages, each element is the density of a given life stage (juvenile, non-reproductive
adult, reproductive adult) at a given site.

competitive_ability Competitive ability among pairs of species

Description

Computes the competitive ability among two species, as defined by Hart et al. (2018). This metric,
as others in MCT, is model-specific; the formulation for a series of Lotka-Volterra-like models is
given in table A1 of Hart et al. (2018). We include in cxr by default the formulation for Beverton-
Holt, Ricker, Law-Watkinson, and Lotka-Volterra families.

Usage

competitive_ability(
cxr_multifit = NULL,
cxr_sp1 = NULL,
cxr_sp2 = NULL,
lambda = NULL,
pair_matrix = NULL,
model_family = NULL

)

competitive_ability 19

Arguments

cxr_multifit cxr_pm_multifit object, with parameters for a series of species.

cxr_sp1 cxr_pm_fit object giving the parameters from the first species.

cxr_sp2 cxr_pm_fit object giving the parameters from the second species.

lambda numeric lambda value of the focal species.

pair_matrix 2x2 matrix with intra and interspecific interaction coefficients between the focal
and competitor species.

model_family model family for which to calculate competitive ability.

Details

The function, as in avg_fitness_diff and niche_overlap, accepts three different parameteriza-
tions:

• A cxr_pm_multifit object, from which competitive ability of a focal species relative to a given
competitor will be computed across all species pairs.

• two cxr_pm_fit objects, one for a focal species and one for a competitor.

• explicit lambda and alpha values, as well as the model family from which these parameters
were obtained.

If the third parameterization is used, the function will try to find a model-specific function for ob-
taining the competitive ability, by looking at the ’model_family’ parameter. If this specific function
is not found, it will resort to the standard Lotka-Volterra formulation (lambda - 1 in the numerator
term, Hart et al. 2018). Overall, we strongly suggest that you use the standard formulation ONLY if
you are completely confident that the model from which you obtained your parameters is consistent
with it. Otherwise, you should include your own formulation of competitive ability (see vignette 4).

Value

data frame with variable number of rows and three columns, specifying taxa identity and the com-
petitive ability of focal species (sp1) relative to the competitor (sp2).

Examples

competitive_ability(lambda = runif(1,1,10),
pair_matrix = matrix(runif(4,0,1),nrow = 2),
model_family = "BH")

20 cxr_er_bootstrap

cxr_er_bootstrap standard error estimates for effect and response parameters

Description

Computes bootstrap standard errors for a given effect/response function. This function is provided
for completeness, but error calculation is integrated in the function cxr_er_fit.

Usage

cxr_er_bootstrap(
fitness_model,
optimization_method,
data,
covariates,
init_par,
lower_bounds,
upper_bounds,
fixed_parameters,
bootstrap_samples

)

Arguments

fitness_model effect/response function, see cxr_er_fit

optimization_method

numerical optimization method.

data either a list of dataframes or a single dataframe. if ’data’ is a list, each element
is a dataframe with the following columns:

• fitness: fitness metric for each observation
• neighbours: named columns giving the number of neighbours of each col-

umn the names of the list elements are taken to be the names of the focal
species.

If ’data’ is a dataframe, it also needs a ’focal’ column. Regardless of the data
structure, all focal species need to have the same number of observations (i.e.
same number of rows), and the set of neighbour species needs to be the same
as the set of focal species, so that the neighbours columns correspond to the
names of the list elements or, if ’data’ is a dataframe, to the values of the ’focal’
column. Future versions will relax this requirement.

covariates a data structure equivalent to ’data’, in which each column are the values of a
covariate.

init_par initial values for parameters

lower_bounds optional list with single values for "lambda", "effect","response", and optionally
"lambda_cov", "effect_cov", "response_cov".

cxr_er_fit 21

upper_bounds optional list with single values for "lambda", "effect","response", and optionally
"lambda_cov", "effect_cov", "response_cov".

fixed_parameters

list with values for fixed parameters, or NULL.
bootstrap_samples

number of bootstrap samples for error calculation. Defaults to 0, i.e. no error is
calculated.

Value

1d vector, the standard error of each parameter in init_par

cxr_er_fit General optimization for effect-response models

Description

Estimates parameters of user-specified models of competitive effects and responses. NOTE: includ-
ing covariates on competitive effects is still under development, in this version it is suggested not to
use that feature.

Usage

cxr_er_fit(
data,
model_family = c("BH"),
covariates = NULL,
optimization_method = c("Nelder-Mead", "BFGS", "CG", "ucminf", "L-BFGS-B", "nlm",
"nlminb", "Rcgmin", "Rvmmin", "spg", "bobyqa", "nmkb", "hjkb", "nloptr_CRS2_LM",
"nloptr_ISRES", "nloptr_DIRECT_L_RAND", "DEoptimR", "GenSA"),

lambda_cov_form = c("none", "global"),
effect_cov_form = c("none", "global"),
response_cov_form = c("none", "global"),
initial_values = list(lambda = 1, effect = 1, response = 1, lambda_cov = 0, effect_cov

= 0, response_cov = 0),
lower_bounds = NULL,
upper_bounds = NULL,
fixed_terms = NULL,
bootstrap_samples = 0

)

Arguments

data either a list of dataframes or a single dataframe. if ’data’ is a list, each element
is a dataframe with the following columns:

• fitness: fitness metric for each observation

22 cxr_er_fit

• neighbours: named columns giving the number of neighbours of each col-
umn the names of the list elements are taken to be the names of the focal
species.

If ’data’ is a dataframe, it also needs a ’focal’ column. Regardless of the data
structure, all focal species need to have the same number of observations (i.e.
same number of rows), and the set of neighbour species needs to be the same
as the set of focal species, so that the neighbours columns correspond to the
names of the list elements or, if ’data’ is a dataframe, to the values of the ’focal’
column. Future versions will relax this requirement.

model_family family of model to use. Available families are BH (Beverton-Holt), LV (Lotka-
Volterra), RK (Ricker), and LW (Law-Watkinson). Users may also define their
own families and models (see vignette 4).

covariates a data structure equivalent to ’data’, in which each column are the values of a
covariate.

optimization_method

numerical optimization method.
lambda_cov_form

form of the covariate effects on lambda. Either "none" (no covariate effects) or
"global" (one estimate per covariate).

effect_cov_form

form of the covariate effects on competitive effects. Either "none" (no covariate
effects) or "global" (one estimate per covariate)

response_cov_form

form of the covariate effects on competitive responses. Either "none" (no co-
variate effects) or "global" (one estimate per covariate)

initial_values list with components "lambda","effect","response", and optionally "lambda_cov",
"effect_cov", "response_cov", specifying the initial values for numerical opti-
mization. Single values are allowed.

lower_bounds optional list with single values for "lambda", "effect","response", and optionally
"lambda_cov", "effect_cov", "response_cov".

upper_bounds optional list with single values for "lambda", "effect","response", and optionally
"lambda_cov", "effect_cov", "response_cov".

fixed_terms optional list specifying which model parameters are fixed.
bootstrap_samples

number of bootstrap samples for error calculation. Defaults to 0, i.e. no error is
calculated.

Value

an object of class ’cxr_er_fit’ which is a list with the following components:

• model_name: string with the name of the fitness model

• model: model function

• data: data supplied

• taxa: names of the taxa fitted

cxr_er_fit 23

• covariates: covariate data supplied

• optimization_method: optimization method used

• initial_values: list with initial values

• fixed_terms: list with fixed terms

• lambda: fitted values for lambdas, or NULL if fixed

• effect: fitted values for competitive effects, or NULL if fixed

• response: fitted values for competitive responses, or NULL if fixed

• lambda_cov: fitted values for effect of covariates on lambdas, or NULL if fixed

• effect_cov: fitted values for effect of covariates on competitive effects, or NULL if fixed

• response_cov: fitted values for effect of covariates on competitive responses, or NULL if fixed

• lambda_standard_error: standard errors for lambdas, if calculated

• effect_standard_error: standard errors for competitive effects, if calculated

• response_standard_error: standard errors for competitive responses, if calculated

• lambda_cov_standard_error: standard errors for effect of covariates on lambdas, if calculated

• effect_cov_standard_error: standard errors for effect of covariates on competitive effects, if
calculated

• response_cov_standard_error: standard errors for effect of covariates on competitive responses,
if calculated

• log_likelihood: log-likelihood of the fits

Examples

fit three species at once
data("neigh_list")
these species all have >250 observations
example_sp <- c("BEMA","LEMA","HOMA")
sp.pos <- which(names(neigh_list) %in% example_sp)
data <- neigh_list[sp.pos]
n.obs <- 250
keep only fitness and neighbours columns
for(i in 1:length(data)){

data[[i]] <- data[[i]][1:n.obs,c(2,sp.pos+2)]#2:length(data[[i]])]
}

covariates: salinity
data("salinity_list")
salinity <- salinity_list[example_sp]
keep only salinity column
for(i in 1:length(salinity)){

salinity[[i]] <- salinity[[i]][1:n.obs,2:length(salinity[[i]])]
}

initial_values = list(lambda = 1,
effect = 1,
response = 1
lambda_cov = 0,

24 cxr_generate_test_data

effect_cov = 0,
response_cov = 0

)
lower_bounds = list(lambda = 0,

effect = 0,
response = 0
lambda_cov = 0,
effect_cov = 0,
response_cov = 0

)
upper_bounds = list(lambda = 100,

effect = 10,
response = 10
lambda_cov = 0,
effect_cov = 0,
response_cov = 0

)

er_3sp <- cxr_er_fit(data = data,
model_family = "BH",
fit without covariates,
as it may be very computationally expensive
covariates = salinity,
optimization_method = "bobyqa",
lambda_cov_form = "none",
effect_cov_form = "none",
response_cov_form = "none",
initial_values = initial_values,
lower_bounds = lower_bounds,
upper_bounds = upper_bounds,
syntaxis for fixed values
fixed_terms = list("response"),
bootstrap_samples = 3)

brief summary
summary(er_3sp)

cxr_generate_test_data

Generate simulated interaction data

Description

Model fitness responses to neighbours and covariates using a Beverton-Holt functional form. This
function is fairly restricted and under development, but can be used to generate simple test data to
run the main functions of cxr.

Usage

cxr_generate_test_data(

cxr_generate_test_data 25

focal_sp = 1,
neigh_sp = 1,
covariates = 0,
observations = 10,
alpha_form = c("pairwise", "none", "global"),
lambda_cov_form = c("none", "global"),
alpha_cov_form = c("none", "global", "pairwise"),
focal_lambda = NULL,
min_lambda = 0,
max_lambda = 10,
alpha = NULL,
min_alpha = 0,
max_alpha = 1,
alpha_cov = NULL,
min_alpha_cov = -1,
max_alpha_cov = 1,
lambda_cov = NULL,
min_lambda_cov = -1,
max_lambda_cov = 1,
min_cov = 0,
max_cov = 1

)

Arguments

focal_sp number of focal species, defaults to 1.

neigh_sp number of neighbour species, defaults to 1.

covariates number of covariates, defaults to 0.

observations number of observations, defaults to 10.

alpha_form what form does the alpha parameter take? one of "none" (no alpha in the model),
"global" (a single alpha for all pairwise interactions), or "pairwise" (one alpha
value for every interaction).

lambda_cov_form

form of the covariate effects on lambda. Either "none" (no covariate effects) or
"global" (one estimate per covariate).

alpha_cov_form form of the covariate effects on alpha. One of "none" (no covariate effects),
"global" (one estimate per covariate on every alpha), or "pairwise" (one estimate
per covariate and pairwise alpha).

focal_lambda optional 1d vector with lambdas of the focal sp.

min_lambda if no focal_lambda is provided, lambdas are taken from a uniform distribution
with min_lambda and max_lambda as minimum and maximum values.

max_lambda if no focal_lambda is provided, lambdas are taken from a uniform distribution
with min_lambda and max_lambda as minimum and maximum values.

alpha optional interaction matrix, neigh_sp x neigh_sp

min_alpha if no focal_alpha is provided, alphas are taken from a uniform distribution with
min_alpha and max_alpha as minimum and maximum values.

26 cxr_pm_bootstrap

max_alpha if no focal_alpha is provided, alphas are taken from a uniform distribution with
min_alpha and max_alpha as minimum and maximum values.

alpha_cov ———-Under development————-

min_alpha_cov if no focal_alpha_cov is provided, alpha_covs are taken from a uniform dis-
tribution with min_alpha_cov and max_alpha_cov as minimum and maximum
values.

max_alpha_cov if no focal_alpha_cov is provided, alpha_covs are taken from a uniform distri-
bution with min_alpha and max_alpha as minimum and maximum values.

lambda_cov optional matrix of neigh_sp x covariates giving the effect of each covariate over
the fecundity (lambda) of each species.

min_lambda_cov if no focal_lambda_cov is provided, lambda_covs are taken from a uniform dis-
tribution with min_lambda_cov and max_lambda_cov as minimum and maxi-
mum values.

max_lambda_cov if no focal_lambda_cov is provided, lambda_covs are taken from a uniform dis-
tribution with min_lambda and max_lambda as minimum and maximum values.

min_cov minimum value for covariates

max_cov maximum value for covariates

Value

list with two components: ’observations’ is a list with as many components as focal species. Each
component of ’observations’ is a dataframe with stochastic number of neighbours and associated
fitness. The second component, ’covariates’, is again a list with one component per focal species.
Each component of ’covariates’ is a dataframe with the values of each covariate for each associated
observation.

Examples

example_obs <- cxr_generate_test_data(focal_sp = 2,
neigh_sp = 2,
alpha_form = "pairwise",
lambda_cov_form = "global",
alpha_cov_form = "global",
covariates = 1)

cxr_pm_bootstrap Standard error estimates for model parameters

Description

Computes bootstrap standard errors for a given population dynamics model. This function is pro-
vided for completeness, but error calculation is integrated in the function cxr_pm_fit.

cxr_pm_bootstrap 27

Usage

cxr_pm_bootstrap(
fitness_model,
optimization_method,
data,
focal_column,
covariates,
init_par,
lower_bounds,
upper_bounds,
fixed_parameters,
bootstrap_samples

)

Arguments

fitness_model function returning a single value to minimize, given a set of parameters and a
fitness metric

optimization_method

numerical optimization method

data dataframe with observations in rows and two sets of columns:

• fitness: fitness metric for the focal individual
• neighbours: columns with user-defined names with number of neighbours

for each group

focal_column optional integer value giving the position, or name, of the column with neigh-
bours from the same species as the focal one. This is necessary if "alpha_intra"
is specified.

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation.

init_par 1d vector of initial parameters

lower_bounds 1d vector of lower bounds

upper_bounds 1d vector of upper bounds

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov",
and "alpha_cov".

bootstrap_samples

how many bootstrap samples to compute.

Value

1d vector, the standard error of each parameter in init_par

28 cxr_pm_fit

cxr_pm_fit General optimization for population models

Description

Estimates parameters of user-specified population dynamics models.

Usage

cxr_pm_fit(
data,
focal_column = NULL,
model_family,
covariates = NULL,
optimization_method = c("Nelder-Mead", "BFGS", "CG", "ucminf", "L-BFGS-B", "nlm",
"nlminb", "Rcgmin", "Rvmmin", "spg", "bobyqa", "nmkb", "hjkb", "nloptr_CRS2_LM",
"nloptr_ISRES", "nloptr_DIRECT_L_RAND", "DEoptimR", "GenSA"),

alpha_form = c("none", "global", "pairwise"),
lambda_cov_form = c("none", "global"),
alpha_cov_form = c("none", "global", "pairwise"),
initial_values = list(lambda = 0, alpha_intra = 0, alpha_inter = 0, lambda_cov = 0,

alpha_cov = 0),
lower_bounds = NULL,
upper_bounds = NULL,
fixed_terms = NULL,
bootstrap_samples = 0

)

Arguments

data dataframe with observations in rows and two sets of columns:

• fitness: fitness metric for the focal individual
• neighbours: numeric columns with user-defined names, giving number of

neighbours for each group

focal_column optional integer or character giving the column with neighbours from the same
species as the focal one. This field is necessary if "alpha_intra" is specified in
initial_values, lower_bounds, upper_bounds, or fixed_terms.

model_family family of model to use. Available families are BH (Beverton-Holt), LV (Lotka-
Volterra), RK (Ricker), and LW (Law-Watkinson). Users may also define their
own families and models (see vignette 4).

covariates optional named matrix or dataframe with observations (rows) of any number of
environmental covariates (columns).

optimization_method

numerical optimization method.

cxr_pm_fit 29

alpha_form what form does the alpha parameter take? one of "none" (no alpha in the model),
"global" (a single alpha for all pairwise interactions), or "pairwise" (one alpha
value for every interaction).

lambda_cov_form

form of the covariate effects on lambda. Either "none" (no covariate effects) or
"global" (one estimate per covariate).

alpha_cov_form form of the covariate effects on alpha. One of "none" (no covariate effects),
"global" (one estimate per covariate on every alpha), or "pairwise" (one estimate
per covariate and pairwise alpha)

initial_values list with components "lambda","alpha_intra","alpha_inter","lambda_cov", "al-
pha_cov", specifying the initial values for numerical optimization. Single values
are allowed.

lower_bounds optional list with single values for "lambda","alpha_intra","alpha_inter","lambda_cov",
"alpha_cov".

upper_bounds optional list with single values for "lambda","alpha_intra","alpha_inter","lambda_cov",
"alpha_cov".

fixed_terms optional list of numeric vectors specifying the value of fixed model parameters,
among "lambda","alpha_intra","alpha_inter","lambda_cov", and "alpha_cov".

bootstrap_samples

number of bootstrap samples for error calculation. Defaults to 0, i.e. no error is
calculated.

Value

an object of class ’cxr_pm_fit’ which is a list with the following components:

• model_name: string with the name of the fitness model

• model: model function

• data: data supplied

• focal_ID: name/ID of the focal taxa, if provided in ’focal_column’

• covariates: covariate data supplied

• optimization_method: optimization method used

• initial_values: list with initial values

• fixed_terms: list with fixed terms

• lambda: fitted value for lambda, or NULL if fixed

• alpha_intra: fitted value for intraspecific alpha, or NULL if fixed

• alpha_inter: fitted value for interspecific alpha, or NULL if fixed

• lambda_cov: fitted value(s) for lambda_cov, or NULL if fixed.

• alpha_cov: fitted value(s) for alpha_cov, or NULL if fixed. These are structured as a list with
one element for each covariate.

• lambda_standard_error: standard error for lambda, if computed

• alpha_intra_standard_error: standard error for intraspecific alpha, if computed

30 cxr_pm_multifit

• alpha_inter_standard_error: standard error for interspecific alpha, if computed

• lambda_cov_standard_error: standard error for lambda_cov, if computed

• alpha_cov_standard_error: standard error for alpha_cov, if computed

• log_likelihood: log-likelihood of the fit

Examples

data("neigh_list")
my.sp <- "BEMA"
data for a single species, keep only fitness and neighbours columns
sp_data <- neigh_list[[my.sp]][2:ncol(neigh_list[[1]])]

sp_fit <- cxr_pm_fit(data = sp_data,
focal_column = my.sp,
optimization_method = "bobyqa",
model_family = "BH",
alpha_form = "pairwise",
lambda_cov_form = "none",
alpha_cov_form = "none",

initial_values = list(lambda = 1,alpha_intra = 0.1,alpha_inter = 0.1),
lower_bounds = list(lambda = 0,alpha_intra = 0,alpha_inter = 0),
upper_bounds = list(lambda = 100,alpha_intra = 1,alpha_inter = 1),
bootstrap_samples = 3)

summary(sp_fit)

cxr_pm_multifit Multi-species parameter optimization

Description

This function is a wrapper for estimating parameters for several focal species, instead of making
separate calls to cxr_pm_fit.

Usage

cxr_pm_multifit(
data,
model_family = c("BH"),
focal_column = NULL,
covariates = NULL,
optimization_method = c("BFGS", "CG", "Nelder-Mead", "ucminf", "L-BFGS-B", "nlm",
"nlminb", "Rcgmin", "Rvmmin", "spg", "bobyqa", "nmkb", "hjkb", "nloptr_CRS2_LM",
"nloptr_ISRES", "nloptr_DIRECT_L_RAND", "DEoptimR", "GenSA"),

alpha_form = c("none", "global", "pairwise"),
lambda_cov_form = c("none", "global"),
alpha_cov_form = c("none", "global", "pairwise"),

cxr_pm_multifit 31

initial_values = NULL,
lower_bounds = NULL,
upper_bounds = NULL,
fixed_terms = NULL,
bootstrap_samples = 0

)

Arguments

data named list in which each component is a dataframe with a fitness column and a
number of columns representing neighbours

model_family family of model to use. Available families are BH (Beverton-Holt), LV (Lotka-
Volterra), RK (Ricker), and LW (Law-Watkinson). Users may also define their
own families and models (see vignette 4).

focal_column character vector with the same length as data, giving the names of the columns
representing intraspecific observations for each species, or numeric vector giv-
ing the position of such columns.

covariates optional named list in which each component is a dataframe with values of each
covariate for each observation. The ith component of covariates are the co-
variate values that correspond to the ith component of data, so they must have
the same number of observations.

optimization_method

numerical optimization method.

alpha_form what form does the alpha parameter take? one of "none" (no alpha in the model),
"global" (a single alpha for all pairwise interactions), or "pairwise" (one alpha
value for every interaction).

lambda_cov_form

form of the covariate effects on lambda. Either "none" (no covariate effects) or
"global" (one estimate per covariate).

alpha_cov_form form of the covariate effects on alpha. One of "none" (no covariate effects),
"global" (one estimate per covariate on every alpha), or "pairwise" (one estimate
per covariate and pairwise alpha)

initial_values list with components "lambda","alpha_intra","alpha_inter","lambda_cov", "al-
pha_cov", specifying the initial values for numerical optimization. Single values
are allowed.

lower_bounds optional list with single values for "lambda","alpha_intra","alpha_inter","lambda_cov",
"alpha_cov".

upper_bounds optional list with single values for "lambda","alpha_intra","alpha_inter","lambda_cov",
"alpha_cov".

fixed_terms optional named list in which each component is itself a list containing fixed
terms for each focal species.

bootstrap_samples

number of bootstrap samples for error calculation. Defaults to 0, i.e. no error is
calculated.

32 cxr_pm_multifit

Value

an object of class ’cxr_pm_multifit’ which is a list with the following components:

• model_name: string with the name of the fitness model

• model: model function

• data: data supplied

• taxa: names of the taxa fitted

• covariates: covariate data supplied

• optimization_method: optimization method used

• initial_values: list with initial values

• fixed_terms: list with fixed terms

• lambda: fitted values for lambda, or NULL if fixed

• alpha_intra: fitted values for alpha_intra, or NULL if fixed

• alpha_inter: fitted values for alpha_inter, or NULL if fixed

• lambda_cov: fitted values for lambda_cov, or NULL if fixed

• alpha_cov: fitted values for alpha_cov, or NULL if fixed

• lambda_standard_error: standard errors for lambda, if computed

• alpha_standard_error: standard errors for alpha, if computed

• lambda_cov_standard_error: standard errors for lambda_cov, if computed

• alpha_cov_standard_error: standard errors for alpha_cov, if computed

• log_likelihood: log-likelihoods of the fits

Examples

fit three species at once
data("neigh_list")
data <- neigh_list[1:3]
keep only fitness and neighbours columns
for(i in 1:length(data)){

data[[i]] <- data[[i]][,2:length(data[[i]])]
}
be explicit about the focal species
focal.sp <- names(data)
covariates: salinity
data("salinity_list")
salinity <- salinity_list[1:3]
keep only salinity column
for(i in 1:length(salinity)){

salinity[[i]] <- data.frame(salinity = salinity[[i]][,2:length(salinity[[i]])])
}

fit_3sp <- cxr_pm_multifit(data = data,
optimization_method = "bobyqa",
model_family = "BH",
focal_column = focal.sp,

densities_to_df 33

covariates = salinity,
alpha_form = "pairwise",
lambda_cov_form = "global",
alpha_cov_form = "global",
initial_values = list(lambda = 1,

alpha_intra = 0.1,
alpha_inter = 0.1,
lambda_cov = 0.1,
alpha_cov = 0.1),

lower_bounds = list(lambda = 0.01,
alpha_intra = 0,
alpha_inter = 0,
lambda_cov = 0,
alpha_cov = 0),

upper_bounds = list(lambda = 100,
alpha_intra = 1,
alpha_inter = 1,
lambda_cov = 1,
alpha_cov = 1),

bootstrap_samples = 3)
brief summary
summary(fit_3sp)
interaction matrix
fit_3sp$alpha_matrix

densities_to_df Converts a densities list to a tidy dataframe

Description

Converts a densities list to a tidy dataframe

Usage

densities_to_df(densities)

Arguments

densities list, species (optionally x year) with each element holding a sites x stages matrix.
This function assumes three life stages.

Value

dataframe with columns species-stage-site(-year)-density

34 fill_dispersal_matrix

fill_demography_matrix

Fill the vec-permutation demography matrix

Description

Fill for a given species, across all sites.

Usage

fill_demography_matrix(focal.sp, vpm, transition_matrices)

Arguments

focal.sp integer, focal species.

vpm data structure holding all vector-permutation matrices; see ‘vec_permutation_matrices‘.
If not in an appropriate format, it is likely to fail without warning.

transition_matrices

nested list species x sites, in which each element holds a 3x3 transition matrix.
If not in that format, it is likely to fail without warning.

Value

vec-permutation demography matrix for a given species across sites.

fill_dispersal_matrix Fill the vec-permutation dispersal matrix

Description

Fill for a given species, all sites

Usage

fill_dispersal_matrix(
focal.sp,
num.sites,
param,
vpm,
env = NULL,
current.densities

)

fill_transition_matrix 35

Arguments

focal.sp integer, focal species

num.sites integer, how many sites

param param nested list,see ‘build_param‘ function

vpm data structure holding all vector-permutation matrices; see ‘vec_permutation_matrices‘

env optional numeric, environmental forcing for a given timestep
current.densities

list of length sp, each element is a matrix sites*stages

Value

dispersal matrix, stages*sites

fill_transition_matrix

Fill a transition matrix

Description

Calculates the elements of a site-specific transition matrix for a given sp. Note that here, and
through all functions, we fix three life stages. Also note that ‘param‘ and ‘env‘ must match, as for
the ‘vital_rate‘ function.

Usage

fill_transition_matrix(focal.sp, site, param, env = NULL, current.densities)

Arguments

focal.sp integer, species

site integer, site

param param structure (see ‘build_param‘ function)

env optional numeric, environmental forcing for a given timestep
current.densities

list of length sp, each element is a matrix site*stages

Value

3x3 transition matrix

36 generate_vital_rate_coefs

fitness_ratio Fitness ratio among two or more species

Description

Fitness ratio among two or more species

Usage

fitness_ratio(
effect_response_fit = NULL,
fitness_sp1 = NULL,
fitness_sp2 = NULL

)

Arguments

effect_response_fit

cxr_er_fit object

fitness_sp1 numeric value representing the fitness (a.k.a. competitive ability) of the first taxa

fitness_sp2 numeric value representing the fitness (a.k.a. competitive ability) of the second
taxa

Value

either a matrix with fitness ratios for all pairs of fitted species, or a single numeric value. The
matrix elements represent the ratios of species in columns over species in rows, and conversely, the
numeric value represents the ratio of sp1 over sp2.

Examples

fitness_ratio(fitness_sp1 = 0.6, fitness_sp2 = 0.3)

generate_vital_rate_coefs

Generate coefficients for obtaining vital rates

Description

Any vital rate is a function of several parameters, potentially including interactions or environmental
effects. This function generates the coefficients for these parameters, so that users do not have to
introduce them all manually in a ‘param‘ list. Coefficients can be generated from a random sampling
of a normal distribution with specified mean and standard deviation, or they can be retrieved from a
model object that accepts a ‘tidy‘ function from the broom/broom.mixed packages. This is because
coefficients for vital rates can be understood as coefficients from statistical regressions.

generate_vital_rate_coefs 37

Usage

generate_vital_rate_coefs(
param,
sp = NULL,
sites = NULL,
vital.rate = NULL,
vr.coef = NULL,
mean.coef = NULL,
sd.coef = NULL,
glm.object = NULL,
glm.coef.equivalence = NULL

)

Arguments

param the original list with the structure of species, sites, vital rates to calculate, and
parameters affecting them. See the function ‘build_param‘

sp number or character of the species to calculate coefficients for. If empty, all
species are assumed.

sites number or character of the sites to calculate coefficients for. If empty, all sites
are assumed.

vital.rate character giving the vital rate to calculate coefficients for. If empty, all vital rates
are assumed.

vr.coef character giving a specific coefficient to calculate. If empty, all coefficients are
assumed.

mean.coef optional numeric value, mean for sampling coefficient values

sd.coef optional numeric value, standard deviation for sampling coefficient values

glm.object optional model object/coef table
glm.coef.equivalence

if a glm table is provided and its names differ from the ‘param‘ data structure,
you can include a named list in which names are the names from ‘param‘ and
its elements are the equivalent names from the glm table

Details

In the current version, we assume that the model coefficients come from a logistic regression with
binomial family. Otherwise, the function will probably not fail, but the coefficients will not be inter-
pretable and the results in terms of obtaining the actual vital rates from these will be meaningless.

Also note that you need to take care manually of the signs of the coefficients, if entered through
mean/sd pairs.

Value

the updated parameter list

38 LV_er_lambdacov_global_effectcov_global_responsecov_global

glm_example_coefs Generalized linear model coefficients

Description

A table with coefficients from a GLM to serve as an example for importing into the data structure
of the metapopulation model.

Usage

data(glm_example_coefs)

Format

A named numerical matrix of 8 rows and 4 columns

LV_er_lambdacov_global_effectcov_global_responsecov_global

Effect response Lotka-Volterra model with covariate effects on
lambda, effect, and response

Description

Note that, as e and r are not pair-specific, all species parameters are fit in the same function.

Usage

LV_er_lambdacov_global_effectcov_global_responsecov_global(
par,
fitness,
target,
density,
covariates,
fixed_parameters

)

Arguments

par 1d vector with initial parameters in the order: lambda,lambda_cov,effect,effect_cov,response,response_cov,sigma

fitness 1d vector with fitness observations

target matrix with species in rows, observations in columns. Value is 1 if a species is
focal for a given observation, 0 otherwise.

density matrix with species in rows, observations in columns. Value is density of each
sp as neighbour for each observation.

LV_er_lambdacov_none_effectcov_none_responsecov_none 39

covariates numeric dataframe or matrix with observations in rows and covariates in columns.
Each cell is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","lambda_cov","effect","effect_cov",
"response","response_cov".

Value

log-likelihood value

LV_er_lambdacov_none_effectcov_none_responsecov_none

Effect response Lotka-Volterra model without covariate effects

Description

Note that, as e and r are not pair-specific, all species parameters are fit in the same function.

Usage

LV_er_lambdacov_none_effectcov_none_responsecov_none(
par,
fitness,
target,
density,
covariates,
fixed_parameters

)

Arguments

par 1d vector with initial parameters in the order: lambda,effect,response,sigma.

fitness 1d vector with fitness observations.

target matrix with species in rows, observations in columns. Value is 1 if a species is
focal for a given observation, 0 otherwise.

density matrix with species in rows, observations in columns. Value is density of each
sp as neighbour for each observation.

covariates included for compatibility, not used in this model.
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","effect","response".

Value

log-likelihood value

40 LV_pm_alpha_none_lambdacov_none_alphacov_none

LV_pm_alpha_global_lambdacov_none_alphacov_none

Lotka-Volterra model with a global alpha and no covariate effects

Description

Lotka-Volterra model with a global alpha and no covariate effects

Usage

LV_pm_alpha_global_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, alpha, and sigma.

fitness 1d vector of fitness observations, in log scale.
neigh_intra_matrix

included for compatibility, not used in this model.
neigh_inter_matrix

matrix of arbitrary columns, number of neighbours for each observation. As in
this model there is a single alpha argument, do not distinguish neighbour identity

covariates included for compatibility, not used in this model.
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_inter".

Value

log-likelihood value

LV_pm_alpha_none_lambdacov_none_alphacov_none

Lotka-Volterra model with no alphas and no covariate effects

Description

This model, in all families, is simply given by lambda.

LV_pm_alpha_pairwise_lambdacov_global_alphacov_global 41

Usage

LV_pm_alpha_none_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda and sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

included for compatibility, not used in this model.
neigh_inter_matrix

included for compatibility, not used in this model.

covariates included for compatibility, not used in this model
fixed_parameters

included for compatibility, not used in this model

Value

log-likelihood value

LV_pm_alpha_pairwise_lambdacov_global_alphacov_global

Lotka-Volterra model with pairwise alphas and global covariate ef-
fects on lambda and alpha

Description

Lotka-Volterra model with pairwise alphas and global covariate effects on lambda and alpha

Usage

LV_pm_alpha_pairwise_lambdacov_global_alphacov_global(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

42 LV_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise

Arguments

par 1d vector of initial parameters: lambda, lambda_cov, alpha, alpha_cov, and
sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov","alpha_cov".

Value

log-likelihood value

LV_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise

Lotka-Volterra model with pairwise alphas, covariate effects on
lambda, and pairwise covariate effects on alpha

Description

Lotka-Volterra model with pairwise alphas, covariate effects on lambda, and pairwise covariate
effects on alpha

Usage

LV_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, lambda_cov, alpha, alpha_cov, and
sigma

fitness 1d vector of fitness observations, in log scale

LV_pm_alpha_pairwise_lambdacov_none_alphacov_none 43

neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov","alpha_cov".

Value

log-likelihood value

LV_pm_alpha_pairwise_lambdacov_none_alphacov_none

Lotka-Volterra model with pairwise alphas and no covariate effects

Description

Lotka-Volterra model with pairwise alphas and no covariate effects

Usage

LV_pm_alpha_pairwise_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: ’lambda’, ’alpha_intra’ (optional), ’alpha_inter’,
and ’sigma’

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates included for compatibility, not used in this model
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter".

44 LV_project_alpha_global_lambdacov_none_alphacov_none

Value

log-likelihood value

LV_project_alpha_global_lambdacov_none_alphacov_none

Lotka-Volterra model for projecting abundances, with a global alpha
and no covariate effects

Description

Lotka-Volterra model for projecting abundances, with a global alpha and no covariate effects

Usage

LV_project_alpha_global_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter single numeric value.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

LV_project_alpha_none_lambdacov_none_alphacov_none 45

LV_project_alpha_none_lambdacov_none_alphacov_none

Model for projecting abundances, with no alpha and no covariate ef-
fects

Description

Model for projecting abundances, with no alpha and no covariate effects

Usage

LV_project_alpha_none_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter included for compatibility, not used in this model.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

LV_project_alpha_pairwise_lambdacov_global_alphacov_global

Lotka-Volterra model for projecting abundances, with specific alpha
values and global covariate effects on alpha and lambda

Description

Lotka-Volterra model for projecting abundances, with specific alpha values and global covariate
effects on alpha and lambda

46 LV_project_alpha_pairwise_lambdacov_global_alphacov_pairwise

Usage

LV_project_alpha_pairwise_lambdacov_global_alphacov_global(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.
alpha_intra single numeric value.
alpha_inter numeric vector with interspecific alpha values.
lambda_cov numeric vector with effects of covariates over lambda.
alpha_cov named list of numeric values with effects of each covariate over alpha.
abundance named numeric vector of abundances in the previous timestep.
covariates matrix with observations in rows and covariates in columns. Each cell is the

value of a covariate in a given observation.

Value

numeric abundance projected one timestep

LV_project_alpha_pairwise_lambdacov_global_alphacov_pairwise

Lotka-Volterra model for projecting abundances, with specific alpha
values and global covariate effects on alpha and lambda

Description

Lotka-Volterra model for projecting abundances, with specific alpha values and global covariate
effects on alpha and lambda

Usage

LV_project_alpha_pairwise_lambdacov_global_alphacov_pairwise(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

LV_project_alpha_pairwise_lambdacov_none_alphacov_none 47

Arguments

lambda named numeric lambda value.
alpha_intra single numeric value.
alpha_inter numeric vector with interspecific alpha values.
lambda_cov numeric vector with effects of covariates over lambda.
alpha_cov named list of named numeric vectors with effects of each covariate over alpha

values.
abundance named numeric vector of abundances in the previous timestep.
covariates matrix with observations in rows and covariates in named columns. Each cell is

the value of a covariate in a given observation.

Value

numeric abundance projected one timestep

LV_project_alpha_pairwise_lambdacov_none_alphacov_none

Lotka-Volterra model for projecting abundances, with specific alpha
values and no covariate effects

Description

Lotka-Volterra model for projecting abundances, with specific alpha values and no covariate effects

Usage

LV_project_alpha_pairwise_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.
alpha_intra included for compatibility, not used in this model.
alpha_inter single numeric value.
lambda_cov included for compatibility, not used in this model.
alpha_cov included for compatibility, not used in this model.
abundance named numeric vector of abundances in the previous timestep.
covariates included for compatibility, not used in this model.

48 LW_er_lambdacov_global_effectcov_global_responsecov_global

Value

numeric abundance projected one timestep

LW_er_lambdacov_global_effectcov_global_responsecov_global

Effect response Law-Watkinson model with covariate effects on
lambda, effect, and response

Description

Note that, as e and r are not pair-specific, all species parameters are fit in the same function.

Usage

LW_er_lambdacov_global_effectcov_global_responsecov_global(
par,
fitness,
target,
density,
covariates,
fixed_parameters

)

Arguments

par 1d vector with initial parameters in the order: lambda,lambda_cov,effect,effect_cov,response,response_cov,sigma

fitness 1d vector with fitness observations

target matrix with species in rows, observations in columns. Value is 1 if a species is
focal for a given observation, 0 otherwise.

density matrix with species in rows, observations in columns. Value is density of each
sp as neighbour for each observation.

covariates numeric dataframe or matrix with observations in rows and covariates in columns.
Each cell is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","lambda_cov","effect","effect_cov",
"response","response_cov".

Value

log-likelihood value

LW_er_lambdacov_none_effectcov_none_responsecov_none 49

LW_er_lambdacov_none_effectcov_none_responsecov_none

Effect response Law-Watkinson model without covariate effects

Description

Note that, as e and r are not pair-specific, all species parameters are fit in the same function.

Usage

LW_er_lambdacov_none_effectcov_none_responsecov_none(
par,
fitness,
target,
density,
covariates,
fixed_parameters

)

Arguments

par 1d vector with initial parameters in the order: lambda,effect,response,sigma.

fitness 1d vector with fitness observations.

target matrix with species in rows, observations in columns. Value is 1 if a species is
focal for a given observation, 0 otherwise.

density matrix with species in rows, observations in columns. Value is density of each
sp as neighbour for each observation.

covariates included for compatibility, not used in this model.
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","effect","response".

Value

log-likelihood value

LW_pm_alpha_global_lambdacov_none_alphacov_none

Law-Watkinson model with a global alpha and no covariate effects

Description

Law-Watkinson model with a global alpha and no covariate effects

50 LW_pm_alpha_none_lambdacov_none_alphacov_none

Usage

LW_pm_alpha_global_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, alpha, and sigma.

fitness 1d vector of fitness observations, in log scale.
neigh_intra_matrix

included for compatibility, not used in this model.
neigh_inter_matrix

matrix of arbitrary columns, number of neighbours for each observation. As in
this model there is a single alpha argument, do not distinguish neighbour identity

covariates included for compatibility, not used in this model.
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_inter".

Value

log-likelihood value

LW_pm_alpha_none_lambdacov_none_alphacov_none

Law-Watkinson model with no alphas and no covariate effects

Description

This model, in all families, is simply given by lambda.

Usage

LW_pm_alpha_none_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

LW_pm_alpha_pairwise_lambdacov_global_alphacov_global 51

Arguments

par 1d vector of initial parameters: lambda and sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

included for compatibility, not used in this model.
neigh_inter_matrix

included for compatibility, not used in this model.

covariates included for compatibility, not used in this model
fixed_parameters

included for compatibility, not used in this model

Value

log-likelihood value

LW_pm_alpha_pairwise_lambdacov_global_alphacov_global

Law-Watkinson model with pairwise alphas and global covariate ef-
fects on lambda and alpha

Description

Law-Watkinson model with pairwise alphas and global covariate effects on lambda and alpha

Usage

LW_pm_alpha_pairwise_lambdacov_global_alphacov_global(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, lambda_cov, alpha, alpha_cov, and
sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

52 LW_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov","alpha_cov".

Value

log-likelihood value

LW_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise

Law-Watkinson model with pairwise alphas, covariate effects on
lambda, and pairwise covariate effects on alpha

Description

Law-Watkinson model with pairwise alphas, covariate effects on lambda, and pairwise covariate
effects on alpha

Usage

LW_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, lambda_cov, alpha, alpha_cov, and
sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov","alpha_cov".

LW_pm_alpha_pairwise_lambdacov_none_alphacov_none 53

Value

log-likelihood value

LW_pm_alpha_pairwise_lambdacov_none_alphacov_none

Law-Watkinson model with pairwise alphas and no covariate effects

Description

Law-Watkinson model with pairwise alphas and no covariate effects

Usage

LW_pm_alpha_pairwise_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: ’lambda’, ’alpha_intra’ (optional), ’alpha_inter’,
and ’sigma’

fitness 1d vector of fitness observations, in log scale

neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates included for compatibility, not used in this model

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter".

Value

log-likelihood value

54 LW_project_alpha_none_lambdacov_none_alphacov_none

LW_project_alpha_global_lambdacov_none_alphacov_none

Law-Watkinson model for projecting abundances, with a global alpha
and no covariate effects

Description

Law-Watkinson model for projecting abundances, with a global alpha and no covariate effects

Usage

LW_project_alpha_global_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter single numeric value.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

LW_project_alpha_none_lambdacov_none_alphacov_none

Model for projecting abundances, with no alpha and no covariate ef-
fects

Description

Model for projecting abundances, with no alpha and no covariate effects

LW_project_alpha_pairwise_lambdacov_global_alphacov_global 55

Usage

LW_project_alpha_none_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter included for compatibility, not used in this model.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

LW_project_alpha_pairwise_lambdacov_global_alphacov_global

Law-Watkinson model for projecting abundances, with specific alpha
values and global covariate effects on alpha and lambda

Description

Law-Watkinson model for projecting abundances, with specific alpha values and global covariate
effects on alpha and lambda

Usage

LW_project_alpha_pairwise_lambdacov_global_alphacov_global(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

56 LW_project_alpha_pairwise_lambdacov_global_alphacov_pairwise

Arguments

lambda numeric lambda value.

alpha_intra single numeric value.

alpha_inter numeric vector with interspecific alpha values.

lambda_cov numeric vector with effects of covariates over lambda.

alpha_cov named list of numeric values with effects of each covariate over alpha.

abundance named numeric vector of abundances in the previous timestep.

covariates matrix with observations in rows and covariates in columns. Each cell is the
value of a covariate in a given observation.

Value

numeric abundance projected one timestep

LW_project_alpha_pairwise_lambdacov_global_alphacov_pairwise

Law-Watkinson model for projecting abundances, with specific alpha
values and global covariate effects on alpha and lambda

Description

Law-Watkinson model for projecting abundances, with specific alpha values and global covariate
effects on alpha and lambda

Usage

LW_project_alpha_pairwise_lambdacov_global_alphacov_pairwise(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda named numeric lambda value.

alpha_intra single numeric value.

alpha_inter numeric vector with interspecific alpha values.

lambda_cov numeric vector with effects of covariates over lambda.

alpha_cov named list of named numeric vectors with effects of each covariate over alpha
values.

LW_project_alpha_pairwise_lambdacov_none_alphacov_none 57

abundance named numeric vector of abundances in the previous timestep.

covariates matrix with observations in rows and covariates in named columns. Each cell is
the value of a covariate in a given observation.

Value

numeric abundance projected one timestep

LW_project_alpha_pairwise_lambdacov_none_alphacov_none

Law-Watkinson model for projecting abundances, with specific alpha
values and no covariate effects

Description

Law-Watkinson model for projecting abundances, with specific alpha values and no covariate effects

Usage

LW_project_alpha_pairwise_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter single numeric value.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

58 neigh_list

metapopulation_example_param

Metapopulation dynamics coefficients

Description

A nested list containing vital rate coefficients for projecting metapopulation dynamics. The first
level of the list has 3 elements, one for each species modelled. The second level of the list has 2
elements, one for each site modelled. For each combination species-site, there is a data.frame of
eight rows - one per each vital rate, and eight columns - one per coefficient, that correspond to the
coefficients of a GLM. These are named as alpha,beta1, etc, in the data.frame, and correspond
to the intercept, environmental effect, effects of each of the three species’ density, and environ-
ment:density interactions

Usage

data(metapopulation_example_param)

Format

A nested list with 3x2 elements, each of which a dataframe of 8 rows and 8 numeric columns

neigh_list neighbours and fitness observations

Description

A dataset containing fitness and neighbours for plant individuals of 17 species. The dataset is a
named list with 16 elements, each of which is a dataframe with the following columns:

• obs_ID: unique identifier for each observation

• fitness: number of viable seeds of the focal individual

• 17 columns indicating the number of neighbours from each plant sp. in a radius of 7.5 cm
from the focal individual

Usage

data(neigh_list)

Format

A list with 17 elements, each of which a dataframe of variable number of rows and 18 columns

Note

For details, see Lanuza et al. 2018 Ecology Letters.

niche_overlap 59

niche_overlap Niche overlap between two species

Description

quoting Godoy et al. (2014): reflects the average degree to which species limit individuals of their
own species relative to competitors. Low niche overlap causes species to have greater per capita
growth rates when rare than when common. If species limit individuals of their own species and
their competitors equally, then niche overlap is 1, and coexistence is not possible unless species are
otherwise identical. At the other extreme, if species have no interspecific effects, then niche overlap
is 0.

Usage

niche_overlap(
cxr_multifit = NULL,
cxr_sp1 = NULL,
cxr_sp2 = NULL,
pair_matrix = NULL

)

Arguments

cxr_multifit cxr_pm_multifit object, with parameters for a series of species.

cxr_sp1 cxr_pm_fit object giving the parameters from the first species.

cxr_sp2 cxr_pm_fit object giving the parameters from the second species.

pair_matrix 2x2 matrix with intra and interspecific interaction coefficients between the two
species.

Details

Niche overlap has a common functional form, in the context of Modern Coexistence Theory (MCT),
for a series of models, including those specified in table A1 of Hart et al. (2018) Journal of Ecology
106, 1902-1909. Other model families may not adhere to the general definition.

Furthermore, the MCT definition only accounts for competitive interactions (i.e. positive alpha co-
efficients in these models). An alternative definition is given in Saavedra et al. (2017) Ecological
Monographs 87,470-486. In this ’structural approach’, positive interactions are allowed. Inciden-
tally, both approaches yield qualitatively similar, but not equivalent, results for purely competitive
matrices.

In all cases, these definitions only apply to models whose feasible equilibrium point can be de-
scribed by a linear equation (see Saavedra et al. 2017, Hart et al. 2018 for details).

This function calculates niche overlap among two or more taxa, using both the MCT and the struc-
tural formulation. The function, as in avg_fitness_diff and competitive_ability, accepts
three different parameterizations:

• A cxr_pm_multifit object, from which niche overlap will be computed across all species pairs.

60 RK_er_lambdacov_global_effectcov_global_responsecov_global

• two cxr_pm_fit objects, one for each species.

• explicit lambda and alpha values, as well as the model family from which these parameters
were obtained.

If negative interactions are present, the MCT niche overlap will be NA. The cxr objects may be
calculated with user-defined model families. If this is the case, or if simply a 2x2 matrix is provided,
the niche overlap metrics will be calculated and a warning will be raised.

Value

either a dataframe with as many rows as species, or a single named numeric vector, containing niche
overlap values for the MCT (modern coexistence theory) and SA (structural approach) formulations.

Examples

niche_overlap(pair_matrix = matrix(c(0.33,0.12,0.2,0.4),nrow = 2))

RK_er_lambdacov_global_effectcov_global_responsecov_global

Effect response Beverton-Holt model with covariate effects on lambda,
effect, and response

Description

Note that, as e and r are not pair-specific, all species parameters are fit in the same function.

Usage

RK_er_lambdacov_global_effectcov_global_responsecov_global(
par,
fitness,
target,
density,
covariates,
fixed_parameters

)

Arguments

par 1d vector with initial parameters in the order: lambda,lambda_cov,effect,effect_cov,response,response_cov,sigma

fitness 1d vector with fitness observations

target matrix with species in rows, observations in columns. Value is 1 if a species is
focal for a given observation, 0 otherwise.

density matrix with species in rows, observations in columns. Value is density of each
sp as neighbour for each observation.

RK_er_lambdacov_none_effectcov_none_responsecov_none 61

covariates numeric dataframe or matrix with observations in rows and covariates in columns.
Each cell is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","lambda_cov","effect","effect_cov",
"response","response_cov".

Value

log-likelihood value

RK_er_lambdacov_none_effectcov_none_responsecov_none

Effect response Ricker model without covariate effects

Description

Note that, as e and r are not pair-specific, all species parameters are fit in the same function.

Usage

RK_er_lambdacov_none_effectcov_none_responsecov_none(
par,
fitness,
target,
density,
covariates,
fixed_parameters

)

Arguments

par 1d vector with initial parameters in the order: lambda,effect,response,sigma.

fitness 1d vector with fitness observations.

target matrix with species in rows, observations in columns. Value is 1 if a species is
focal for a given observation, 0 otherwise.

density matrix with species in rows, observations in columns. Value is density of each
sp as neighbour for each observation.

covariates included for compatibility, not used in this model.
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","effect","response".

Value

log-likelihood value

62 RK_pm_alpha_none_lambdacov_none_alphacov_none

RK_pm_alpha_global_lambdacov_none_alphacov_none

Ricker model with a global alpha and no covariate effects

Description

Ricker model with a global alpha and no covariate effects

Usage

RK_pm_alpha_global_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, alpha, and sigma.

fitness 1d vector of fitness observations, in log scale.
neigh_intra_matrix

included for compatibility, not used in this model.
neigh_inter_matrix

matrix of arbitrary columns, number of neighbours for each observation. As in
this model there is a single alpha argument, do not distinguish neighbour identity

covariates included for compatibility, not used in this model.
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_inter".

Value

log-likelihood value

RK_pm_alpha_none_lambdacov_none_alphacov_none

Ricker model with no alphas and no covariate effects

Description

This model, in all families, is simply given by lambda.

RK_pm_alpha_pairwise_lambdacov_global_alphacov_global 63

Usage

RK_pm_alpha_none_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda and sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

included for compatibility, not used in this model.
neigh_inter_matrix

included for compatibility, not used in this model.

covariates included for compatibility, not used in this model
fixed_parameters

included for compatibility, not used in this model

Value

log-likelihood value

RK_pm_alpha_pairwise_lambdacov_global_alphacov_global

Ricker model with pairwise alphas and global covariate effects on
lambda and alpha

Description

Ricker model with pairwise alphas and global covariate effects on lambda and alpha

Usage

RK_pm_alpha_pairwise_lambdacov_global_alphacov_global(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

64 RK_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise

Arguments

par 1d vector of initial parameters: lambda, lambda_cov, alpha, alpha_cov, and
sigma

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov","alpha_cov".

Value

log-likelihood value

RK_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise

Ricker model with pairwise alphas, covariate effects on lambda, and
pairwise covariate effects on alpha

Description

Ricker model with pairwise alphas, covariate effects on lambda, and pairwise covariate effects on
alpha

Usage

RK_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: lambda, lambda_cov, alpha, alpha_cov, and
sigma

fitness 1d vector of fitness observations, in log scale

RK_pm_alpha_pairwise_lambdacov_none_alphacov_none 65

neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates optional matrix with observations in rows and covariates in columns. Each cell
is the value of a covariate in a given observation

fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter","lambda_cov","alpha_cov".

Value

log-likelihood value

RK_pm_alpha_pairwise_lambdacov_none_alphacov_none

Ricker model with pairwise alphas and no covariate effects

Description

Ricker model with pairwise alphas and no covariate effects

Usage

RK_pm_alpha_pairwise_lambdacov_none_alphacov_none(
par,
fitness,
neigh_intra_matrix = NULL,
neigh_inter_matrix,
covariates,
fixed_parameters

)

Arguments

par 1d vector of initial parameters: ’lambda’, ’alpha_intra’ (optional), ’alpha_inter’,
and ’sigma’

fitness 1d vector of fitness observations, in log scale
neigh_intra_matrix

optional matrix of one column, number of intraspecific neighbours for each ob-
servation

neigh_inter_matrix

matrix of arbitrary columns, number of interspecific neighbours for each obser-
vation

covariates included for compatibility, not used in this model
fixed_parameters

optional list specifying values of fixed parameters, with components "lambda","alpha_intra","alpha_inter".

66 RK_project_alpha_global_lambdacov_none_alphacov_none

Value

log-likelihood value

RK_project_alpha_global_lambdacov_none_alphacov_none

Ricker model for projecting abundances, with a global alpha and no
covariate effects

Description

Ricker model for projecting abundances, with a global alpha and no covariate effects

Usage

RK_project_alpha_global_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter single numeric value.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

RK_project_alpha_none_lambdacov_none_alphacov_none 67

RK_project_alpha_none_lambdacov_none_alphacov_none

Model for projecting abundances, with no alpha and no covariate ef-
fects

Description

Model for projecting abundances, with no alpha and no covariate effects

Usage

RK_project_alpha_none_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.

alpha_intra included for compatibility, not used in this model.

alpha_inter included for compatibility, not used in this model.

lambda_cov included for compatibility, not used in this model.

alpha_cov included for compatibility, not used in this model.

abundance named numeric vector of abundances in the previous timestep.

covariates included for compatibility, not used in this model.

Value

numeric abundance projected one timestep

RK_project_alpha_pairwise_lambdacov_global_alphacov_global

Ricker model for projecting abundances, with specific alpha values
and global covariate effects on alpha and lambda

Description

Ricker model for projecting abundances, with specific alpha values and global covariate effects on
alpha and lambda

68 RK_project_alpha_pairwise_lambdacov_global_alphacov_pairwise

Usage

RK_project_alpha_pairwise_lambdacov_global_alphacov_global(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.
alpha_intra single numeric value.
alpha_inter numeric vector with interspecific alpha values.
lambda_cov numeric vector with effects of covariates over lambda.
alpha_cov named list of numeric values with effects of each covariate over alpha.
abundance named numeric vector of abundances in the previous timestep.
covariates matrix with observations in rows and covariates in columns. Each cell is the

value of a covariate in a given observation.

Value

numeric abundance projected one timestep

RK_project_alpha_pairwise_lambdacov_global_alphacov_pairwise

Ricker model for projecting abundances, with specific alpha values
and global covariate effects on alpha and lambda

Description

Ricker model for projecting abundances, with specific alpha values and global covariate effects on
alpha and lambda

Usage

RK_project_alpha_pairwise_lambdacov_global_alphacov_pairwise(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

RK_project_alpha_pairwise_lambdacov_none_alphacov_none 69

Arguments

lambda named numeric lambda value.
alpha_intra single numeric value.
alpha_inter numeric vector with interspecific alpha values.
lambda_cov numeric vector with effects of covariates over lambda.
alpha_cov named list of named numeric vectors with effects of each covariate over alpha

values.
abundance named numeric vector of abundances in the previous timestep.
covariates matrix with observations in rows and covariates in named columns. Each cell is

the value of a covariate in a given observation.

Value

numeric abundance projected one timestep

RK_project_alpha_pairwise_lambdacov_none_alphacov_none

Ricker model for projecting abundances, with specific alpha values
and no covariate effects

Description

Ricker model for projecting abundances, with specific alpha values and no covariate effects

Usage

RK_project_alpha_pairwise_lambdacov_none_alphacov_none(
lambda,
alpha_intra,
alpha_inter,
lambda_cov,
alpha_cov,
abundance,
covariates

)

Arguments

lambda numeric lambda value.
alpha_intra included for compatibility, not used in this model.
alpha_inter single numeric value.
lambda_cov included for compatibility, not used in this model.
alpha_cov included for compatibility, not used in this model.
abundance named numeric vector of abundances in the previous timestep.
covariates included for compatibility, not used in this model.

70 spatial_sampling

Value

numeric abundance projected one timestep

salinity_list Salinity measurements

Description

A list containing salinity values associated to the data from ’neigh_list’. The list has 17 elements,
one for each focal species considered. Each element of the list is a dataframe with 2 columns:

• obs_ID: unique identifier of each observation

• salinity: salinity measurement for that observation, in accumulated microsiemens/m2

Usage

data(salinity_list)

Format

A list with 17 elements, each of which a dataframe of variable number of rows and 2 numeric
columns

Note

For details, see Lanuza et al. 2018 Ecology Letters.

spatial_sampling spatial arrangement of the observations

Description

A dataset giving the spatial arrangement of observations. The dataset is a list of 16 elements fol-
lowing the structure of ’neigh_list’. Each list component is a dataframe with columns:

Usage

data(spatial_sampling)

Format

A list with 16 elements, each of which a dataframe of variable number of rows and 18 columns

species_fitness 71

Details

• obs_ID: unique identifier for each observation

• plot: one of 9 plots of 8.5 x 8.5 m

• subplot: one of 36 subplots of 1x1 m within each plot

Note

For details, see Lanuza et al. 2018 Ecology Letters.

species_fitness Fitness of a species

Description

Calculates the fitness of a species sensu Godoy et al. (2014).Note that its definition is model-
specific, i.e. it depends on the model family from which interaction coefficients were estimated.
The function given here assumes a community of n-species, so that species fitness is calculated
according to a general competitive response (r) substituting the 2-sp denominator terms of table A1
of Hart et al. 2018. This competitive response can be calculated for a series of species with the
function ’cxr_er_fit’.

Usage

species_fitness(
effect_response_fit = NULL,
lambda = NULL,
competitive_response = NULL,
model_family = NULL

)

Arguments

effect_response_fit

cxr_er_fit object with valid lambda and response terms.

lambda per capita fecundity of the species in the absence of competition.
competitive_response

parameter reflecting the species’ sensitivity to competition.

model_family model family for which to calculate species fitness.

Details

Thus, the function accepts two sets of parameters. First, a ’cxr_er_fit’ object returned from that
function. In this case, species fitness will be calculated for all focal taxa included in the ’cxr_er_fit’
object.

Otherwise, users may enter a specification of the model to use, as well as lambda and competitive
response parameters of a single species.

72 species_rates

If no model family is provided, or a model family for which there is no associated ’XX_species_fitness’
function, the function resorts to the standard Lotka-Volterra formulation (Hart et al. 2018). Overall,
we strongly suggest that you use the standard formulation ONLY if you are completely confident
that the model from which you obtained your parameters is consistent with it. Otherwise, you
should include your own formulation of species fitness (see vignette 4).

Value

single numeric value/vector, species fitness of one or several taxa

species_rates Species germination and survival rates

Description

A dataset containing germination and survival rates for 17 plant species. It includes columns with
the scientific names and their associated codes.

Usage

data(species_rates)

Format

A data frame with 17 rows and 4 variables

Details

• species: binomial name

• code: four-letter code used in other datasets

• germination: germination rate

• seed.survival: annual survival of ungerminated seed in the soil

Note

For details, see Lanuza et al. 2018 Ecology Letters.

summary.cxr_er_fit 73

summary.cxr_er_fit CXR summary method for effect response model fits

Description

CXR summary method for effect response model fits

Usage

S3 method for class 'cxr_er_fit'
summary(object, ...)

Arguments

object a cxr_er_fit object, from the function with the same name

... other arguments, not used

Value

console output

summary.cxr_pm_fit CXR summary method for population model fits

Description

CXR summary method for population model fits

Usage

S3 method for class 'cxr_pm_fit'
summary(object, ...)

Arguments

object a cxr_pm_fit object, from the function with the same name

... other arguments, not used

Value

console output

74 vec_permutation_matrices

summary.cxr_pm_multifit

CXR summary method for multispecies fits

Description

CXR summary method for multispecies fits

Usage

S3 method for class 'cxr_pm_multifit'
summary(object, ...)

Arguments

object a cxr_pm_multifit object, from the function with the same name

... other arguments, not used

Value

console output

vec_permutation_matrices

Generate templates for dispersal, demography, and permutation ma-
trices

Description

this follows the vec-permutation approach as defined in: Hunter and Caswell 2005, doi:10.1016/j.ecolmodel.2005.05.002,
Ozgul et al. 2009, doi: 10.1086/597225

Usage

vec_permutation_matrices(num.sp, num.sites, num.stages)

Arguments

num.sp integer, number of species

num.sites integer, number of sites

num.stages integer, number of stages

Value

nested list, of the form ‘list[[type]][[sp]]‘, where ‘type‘ is demography, dispersal, or permutation.

vital_rate 75

Examples

number of demographic stages - this should be always fixed to 3 for
compatibility with other functions
num.stages <- 3
num.sp <- 4
num.sites <- 5
vpm <- vec_permutation_matrices(num.sp,num.sites,num.stages)

vital_rate Vital rate calculation

Description

Calculates vital rates from their effect sizes and terms. This is equivalent to predicting from a
binomial glm with given coefficients. In this version, the user needs to ensure that ‘param‘ and
‘env‘ match, i.e. that if the ‘param‘ list is defined with environmental forcing, it is passed here, and
viceversa. In future versions I may implement checks for that here, but for now, be aware that it
will fail.

Usage

vital_rate(vr, sp, site, param, env = NULL, densities)

Arguments

vr integer or char, vital rate to obtain, from the ones defined in ‘param‘. So far,
valid names are "Sj","Sn","Sr","Rn","Rr","D","Ds,"O".

sp integer or char, species

site intger or char, site

param param nested list (see ‘build_param‘)

env optional numeric, environmental forcing

densities densities of all sp in the site, including individuals from all three life stages

Value

numeric value

Index

∗ datasets
abundance, 3
glm_example_coefs, 38
metapopulation_example_param, 58
neigh_list, 58
salinity_list, 70
spatial_sampling, 70
species_rates, 72

abundance, 3
abundance_projection, 4
avg_fitness_diff, 5

BH_er_lambdacov_global_effectcov_global_responsecov_global,
7

BH_er_lambdacov_none_effectcov_none_responsecov_none,
8

BH_pm_alpha_global_lambdacov_none_alphacov_none,
9

BH_pm_alpha_none_lambdacov_none_alphacov_none,
9

BH_pm_alpha_pairwise_lambdacov_global_alphacov_global,
10

BH_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise,
11

BH_pm_alpha_pairwise_lambdacov_none_alphacov_none,
12

BH_project_alpha_global_lambdacov_none_alphacov_none,
13

BH_project_alpha_none_lambdacov_none_alphacov_none,
14

BH_project_alpha_pairwise_lambdacov_global_alphacov_global,
14

BH_project_alpha_pairwise_lambdacov_global_alphacov_pairwise,
15

BH_project_alpha_pairwise_lambdacov_none_alphacov_none,
16

build_param, 17

calculate_densities, 18

competitive_ability, 18
cxr_er_bootstrap, 20
cxr_er_fit, 21
cxr_generate_test_data, 24
cxr_pm_bootstrap, 26
cxr_pm_fit, 28
cxr_pm_multifit, 30

densities_to_df, 33

fill_demography_matrix, 34
fill_dispersal_matrix, 34
fill_transition_matrix, 35
fitness_ratio, 36

generate_vital_rate_coefs, 36
glm_example_coefs, 38

LV_er_lambdacov_global_effectcov_global_responsecov_global,
38

LV_er_lambdacov_none_effectcov_none_responsecov_none,
39

LV_pm_alpha_global_lambdacov_none_alphacov_none,
40

LV_pm_alpha_none_lambdacov_none_alphacov_none,
40

LV_pm_alpha_pairwise_lambdacov_global_alphacov_global,
41

LV_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise,
42

LV_pm_alpha_pairwise_lambdacov_none_alphacov_none,
43

LV_project_alpha_global_lambdacov_none_alphacov_none,
44

LV_project_alpha_none_lambdacov_none_alphacov_none,
45

LV_project_alpha_pairwise_lambdacov_global_alphacov_global,
45

LV_project_alpha_pairwise_lambdacov_global_alphacov_pairwise,
46

76

INDEX 77

LV_project_alpha_pairwise_lambdacov_none_alphacov_none,
47

LW_er_lambdacov_global_effectcov_global_responsecov_global,
48

LW_er_lambdacov_none_effectcov_none_responsecov_none,
49

LW_pm_alpha_global_lambdacov_none_alphacov_none,
49

LW_pm_alpha_none_lambdacov_none_alphacov_none,
50

LW_pm_alpha_pairwise_lambdacov_global_alphacov_global,
51

LW_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise,
52

LW_pm_alpha_pairwise_lambdacov_none_alphacov_none,
53

LW_project_alpha_global_lambdacov_none_alphacov_none,
54

LW_project_alpha_none_lambdacov_none_alphacov_none,
54

LW_project_alpha_pairwise_lambdacov_global_alphacov_global,
55

LW_project_alpha_pairwise_lambdacov_global_alphacov_pairwise,
56

LW_project_alpha_pairwise_lambdacov_none_alphacov_none,
57

metapopulation_example_param, 58

neigh_list, 58
niche_overlap, 59

RK_er_lambdacov_global_effectcov_global_responsecov_global,
60

RK_er_lambdacov_none_effectcov_none_responsecov_none,
61

RK_pm_alpha_global_lambdacov_none_alphacov_none,
62

RK_pm_alpha_none_lambdacov_none_alphacov_none,
62

RK_pm_alpha_pairwise_lambdacov_global_alphacov_global,
63

RK_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise,
64

RK_pm_alpha_pairwise_lambdacov_none_alphacov_none,
65

RK_project_alpha_global_lambdacov_none_alphacov_none,
66

RK_project_alpha_none_lambdacov_none_alphacov_none,
67

RK_project_alpha_pairwise_lambdacov_global_alphacov_global,
67

RK_project_alpha_pairwise_lambdacov_global_alphacov_pairwise,
68

RK_project_alpha_pairwise_lambdacov_none_alphacov_none,
69

salinity_list, 70
spatial_sampling, 70
species_fitness, 71
species_rates, 72
summary.cxr_er_fit, 73
summary.cxr_pm_fit, 73
summary.cxr_pm_multifit, 74

vec_permutation_matrices, 74
vital_rate, 75

	abundance
	abundance_projection
	avg_fitness_diff
	BH_er_lambdacov_global_effectcov_global_responsecov_global
	BH_er_lambdacov_none_effectcov_none_responsecov_none
	BH_pm_alpha_global_lambdacov_none_alphacov_none
	BH_pm_alpha_none_lambdacov_none_alphacov_none
	BH_pm_alpha_pairwise_lambdacov_global_alphacov_global
	BH_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise
	BH_pm_alpha_pairwise_lambdacov_none_alphacov_none
	BH_project_alpha_global_lambdacov_none_alphacov_none
	BH_project_alpha_none_lambdacov_none_alphacov_none
	BH_project_alpha_pairwise_lambdacov_global_alphacov_global
	BH_project_alpha_pairwise_lambdacov_global_alphacov_pairwise
	BH_project_alpha_pairwise_lambdacov_none_alphacov_none
	build_param
	calculate_densities
	competitive_ability
	cxr_er_bootstrap
	cxr_er_fit
	cxr_generate_test_data
	cxr_pm_bootstrap
	cxr_pm_fit
	cxr_pm_multifit
	densities_to_df
	fill_demography_matrix
	fill_dispersal_matrix
	fill_transition_matrix
	fitness_ratio
	generate_vital_rate_coefs
	glm_example_coefs
	LV_er_lambdacov_global_effectcov_global_responsecov_global
	LV_er_lambdacov_none_effectcov_none_responsecov_none
	LV_pm_alpha_global_lambdacov_none_alphacov_none
	LV_pm_alpha_none_lambdacov_none_alphacov_none
	LV_pm_alpha_pairwise_lambdacov_global_alphacov_global
	LV_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise
	LV_pm_alpha_pairwise_lambdacov_none_alphacov_none
	LV_project_alpha_global_lambdacov_none_alphacov_none
	LV_project_alpha_none_lambdacov_none_alphacov_none
	LV_project_alpha_pairwise_lambdacov_global_alphacov_global
	LV_project_alpha_pairwise_lambdacov_global_alphacov_pairwise
	LV_project_alpha_pairwise_lambdacov_none_alphacov_none
	LW_er_lambdacov_global_effectcov_global_responsecov_global
	LW_er_lambdacov_none_effectcov_none_responsecov_none
	LW_pm_alpha_global_lambdacov_none_alphacov_none
	LW_pm_alpha_none_lambdacov_none_alphacov_none
	LW_pm_alpha_pairwise_lambdacov_global_alphacov_global
	LW_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise
	LW_pm_alpha_pairwise_lambdacov_none_alphacov_none
	LW_project_alpha_global_lambdacov_none_alphacov_none
	LW_project_alpha_none_lambdacov_none_alphacov_none
	LW_project_alpha_pairwise_lambdacov_global_alphacov_global
	LW_project_alpha_pairwise_lambdacov_global_alphacov_pairwise
	LW_project_alpha_pairwise_lambdacov_none_alphacov_none
	metapopulation_example_param
	neigh_list
	niche_overlap
	RK_er_lambdacov_global_effectcov_global_responsecov_global
	RK_er_lambdacov_none_effectcov_none_responsecov_none
	RK_pm_alpha_global_lambdacov_none_alphacov_none
	RK_pm_alpha_none_lambdacov_none_alphacov_none
	RK_pm_alpha_pairwise_lambdacov_global_alphacov_global
	RK_pm_alpha_pairwise_lambdacov_global_alphacov_pairwise
	RK_pm_alpha_pairwise_lambdacov_none_alphacov_none
	RK_project_alpha_global_lambdacov_none_alphacov_none
	RK_project_alpha_none_lambdacov_none_alphacov_none
	RK_project_alpha_pairwise_lambdacov_global_alphacov_global
	RK_project_alpha_pairwise_lambdacov_global_alphacov_pairwise
	RK_project_alpha_pairwise_lambdacov_none_alphacov_none
	salinity_list
	spatial_sampling
	species_fitness
	species_rates
	summary.cxr_er_fit
	summary.cxr_pm_fit
	summary.cxr_pm_multifit
	vec_permutation_matrices
	vital_rate
	Index

